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Abstract—An automatic parallelizer is a tool that converts
serial code in C, C++ and Fortran to parallel code. This is an
important problem because most hardware today is parallel and
manually rewriting the vast repository of serial code is tedious
and error prone. We have developed an automatic parallelizing
compiler for source code, AESOP targeting shared memory ma-
chines. AESOP leverages the LLVM infrastructure and presently
works with LLVM-3.0. It targets parallelism for dense array-
based codes with affine-based analysis using traditional methods.

The focus of AESOP is not to break new ground in paralleliza-
tion theory, but to deliver a robust and fast compiler that can
handle large programs while getting good speedups for large, real
affine-function codes. It is unique among research compilers in
the scope of programs parallelized, with programs totalling over
2 million lines of source code (LOC) being correctly handled
including primarily the entire SPEC CPU 2006 suite. Smaller
programs totalling a few thousand LOC from OMP 2001, NAS
and Polybench benchmark suites are also parallelized. Of the
tested programs, AESOP identified a subset of SPEC CPU 2006
benchmarks and most of the other programs with over 100,000
LOC in total that it was able to automatically get good speedups
on. The fraction of benchmarks parallelized is small for SPEC
CPU 2006 because SPEC benchmarks are predominantly serial
programs with no exploitable affine parallelism. We have not
seen speedup numbers on parallelizing the entire SPEC CPU
2006 benchmark suite (or any significant portion thereof) using
affine methods in any other published work.

In comparing with the leading open-source polyhedral-based
compiler (Pluto), AESOP delivered significantly better speedups
on Polybench benchmarks owing to its greater tolerance of
different types of affine access patterns, and better affine-based
cache optimizations. Pluto was not able to compile any of the
larger benchmark suites we list above.

I. INTRODUCTION

An automatic parallelizer is a tool that takes as input serial
code and produces as output parallel code. Traditionally such
tools have been designed for source code with affine loops in
them. Affine loops are loops that contain array indices that are
a linear combination of the induction variables of the loop nest
i.e. loops containing A[i][j], A[i+ 3j+ 5][4i+ 2j+ 10], A[i][i] are
all affine whereas loops containing A[i/2] or A[i2] are not.

There have been two schools of thought in literature to
build affine automatic parallelizers: (i) parallelizers built on
the traditional models using distance/direction methods, and
(ii) parallelizers built on the polyhedral analysis.

A. Traditional methods

Traditional methods [15] [14] [7] [3] [4] [11] [13] are
those which are based on modeling loops as the units of

consideration, where matrices are used to model most concepts
including affine indices, iteration vectors, dependence vectors
and loop transformations. Methods have been proposed for
deciding what order of transformations should be applied and
in what order.

The traditional methods are divided into three steps: (i)
representation of the dependencies using distance or direction
vectors characrizing all the dependences present in a loop;
(ii) decision algorithms to transform loop nests, to further
maximize parallelization in a loop using algorithms to reason
about different loop transformations and (iii) then methods to
generate target code using standard compiler techniques.

B. Polyhedral methods

Polyhedral methods [12] [10] [9] [6] [5] [8] are the second
class used for affine analysis and automatic parallelization.
They represent each statement in an affine loop separately as
a point in an iteration domain. After this is done decisions to
transform the loop are taken using affine scheduling functions
each of which maps each run-time statement instance to a
logical execution date and parallel code is generated using
syntax tree construction schemes that consist of a recursive
application of domain projections and separations.

Polyhedral methods have the following three advantages
over traditional methods:

• First, polyhedral models handle imperfectly nested loops
seamlessly in their model.

• Second, they are able to model dependence between every
dynamic instance in the loop.

• Third, complex affine transformations can be modeled
as scheduling functions, which in a few instances, can
discover multiple traditional transformations in one step;

Traditional methods have the following advantages over the
polyhedral methods:

• First, their worst-case complexity is in the order of poly-
nomial complexity against the exponential complexity of
polyhedral methods. This has been shown to be accept-
able for smaller programs, but no one has demonstrated
a working polyhedral compiler that can handle programs
in the hundreds of thousands or millions of LOC. Their
scalability has not been tested since the brittleness of
existing polyhedral implementations has prevented their
testing on large programs.



• Second, the implementation complexity of traditional
methods is significantly lower than that of polyhedral
methods.

• Third, polyhedral methods are known to have strict re-
quirements on what kind of the codes they can handle,
and cannot parallelize codes even slightly outside their
requirements. This is problematic for large, real world
programs for which rewriting by hand is tedious and de-
feats the purpose of automatic parallelization. Traditional
methods are more forgiving.

In balance we decided to implement our technologies in the
traditional model.

II. AFFINE AUTOMATIC PARALLELIZER

In this section we present a detailed description of the
architecture of the AESOP source parallelizing compiler.

The block diagram of the affine automatic parallelizer
developed by us is shown in figure 1. We describe these blocks
and flow briefly first followed by their detailed description in
the following subsections.

First, the serial llvm IR is fed into the undoing compiler
optimizations module. These include the ”Loop Simplify” and
”Induction Variable Simplify” passes from LLVM. The LLVM
IR obtained after this module is still serial (lets call it “new
serial LLVM IR”), however the loops are simplified i.e. contain
only one exit block when possible and cannonical induction
variables are introduced into loops whenever possible. Such
simplification of loops is essential to run our affine analysis
on them and then generate parallel code.

Second, this new serial LLVM IR is then passed into the
loop dependence analysis block, which consists of the alias
analysis module and the distance vector generator. Every pair
of memory accesses in a loop are passed into the alias analysis
module and the distance vector generator. The alias analysis
passes that are called in our parallelizer are the standard ones
present in LLVM. We did not write any new alias analysis
passes. If using the standard alias analysis passes from LLVM
we discover that the two references do not alias, we can say
that there is no dependence between them and that the distance
vector associated with this pair of references is (0, 0, · · · , 0)
consisting of as many zeroes as the loop nesting depth. If
alias analysis is unable to prove that the two references do not
alias with one another we pass them onto the distance vector
module. This module consists of the delta and banerjee’s
inequality tests from affine literature. It helps us discover
distance/direction vectors for this pair of memory references.
After we have analyzed every pair of accesses in the loop
we would have generated all the distance/direction vectors
associated with this loop. Hence, the output of the loop
dependence analysis block are all distance/direction vectors
associated with each loop.

Third, the distance/direction vectors and the new serial
LLVM IR are passed into the parallelizer block that talks to
the decision algorithm block. The decision algorithm decides
which loop dimensions to parallelize. The decision algorithm
talks to scalar reduction and takes a decision based on the

for i from lbi to ubi
tmp = 0;
for j from lbj to ubj
A[i,j] = A[i,j] + tmp;
tmp = B[j] + 10;

end for

end for

Fig. 2. Example of a loop that carries a scalar dependence

scalar dependence information and array dependence informa-
tion(distance/direction vectors). Subsection II-A presents the
method used to collect scalar dependence information from
loops. It is important to analyze the scalar dependences in
a loop since if there is a loop carried scalar dependence in a
loop it may prevent parallelization of that dimension. However,
some loop carried dependences such as the ones that perform
reduction operations do not prevent parallelization. These will
also be discussed in detail in section II-A. The details on
how we make the parallelization decision is presented in
section II-B. The output of the parallelizer block called the
parallelization decision is a list of loops that we have decided
to parallelize.

Finally, after the parallelization decision is taken and we
have decided which loops to parallelize we pass this informa-
tion along with the new serial LLVM IR to the parallel code
generator block which generates SPMD parallel code for each
of the parallel loops. The details of the parallel code generator
are described in subsection II-C.

A. Scalar dependencies

A scalar dependence is present in a loop if a location
is defined in one iteration of the loop and used in another
iteration of the loop. We recognize scalar dependencies from
source by analyzing def-use chains. All variables are checked
to see if they are defined in one iteration and used in a later
iteration. This is a check on def-use chains of variables, to see
if the variable is live at the exit block of the loop. We check
for the presence of scalar dependencies at every loop depth as
a certain dependence may be present at one depth and not at
another loop depth. For example in the code in figure 2 tmp
has a scalar dependence on Loopj, however there is no scalar
dependence on Loopi. Hence Loopi can be parallelized in this
code. Variable tmp may be register allocated in a binary (say
to tmp r) and data flow will tell us that it is live across the
Loopj but not live across Loopi.

1) Special case of scalar dependence: Reduction: Certain
scalar loop carried dependencies such as reduction do not
prevent parallelization as known in affine literature [11]. One
example loop that contains a reduction on the variable sum

is presented in figure 3. For every scalar variable that is live
across the loop, we check to see if this is due to a reduction
operation. Reduction operations known and implemented from
traditional affine technologies are sum, product and min/max
operations. Once such scalar values are recognized using the
standard rules of reduction, this scalar value is marked as
reduction and no more prevents parallelization. For e.g. , the
variable sum is marked as a reduction on Loopj. If this loop level
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Fig. 1. Detailed diagram of the Affine Parallelizer

is chosen for parallelization then code is generated such that
each parallel thread accumulates a part of sum and after all the
parallel loops have executed they are all added up. Reduction
is a standard transformation and has been explained in detail
in [11].

for i from lbi to ubi
sum = 0;
for j from lbj to ubj
sum = sum + A[i,j]

end for
end for

Fig. 3. Example of a loop that carries a reduction dependence

B. Deciding Partitions

In this section we present the algorithm we use to decide
which loop dimensions to parallelize in any affine loop nest.

Say that a loop nest (i, j) has a dependence vector vecD =
(1,0), indicating that there is a dependence along i, whereas
there is no dependence along induction variable j. So, if we
execute all iterations of i on one processor then we can
parallelize the iterations along j among all the processors.
Pictorially, this is represented as partition 1 in figure 4,
which shows the iteration space as a 2-D matrix of i and
j values. Conversely, if the only dependence vector is ~D =
(0,2), indicating that there is a dependence in steps of two
along induction variable j, and no dependence along induction
variable i. In this case we can execute all iterations of j on one
processor then we can parallelize the iterations along i among
all the processors. Pictorially, this is represented as partition 2
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Fig. 4. Different partitions of the iteration space

in figure 4. Partition 3 in that figure can be used when there
is no loop-carried dependence on either loop dimension (i.e.
~D = (0,0)).

However, it is not always this simple when dealing with
arbitrarily nested loop dimensions. It is essential to have
a algorithm to effectively decide which loops to parallelize
to maximize speedup from parallelization. We would gain
maximum from parallelizing the outer most dimensions that
is parallel in loop nests. The algorithm used to determine
the outer most dimensions to parallelize in arbitrarily nested
affine loops is presented in algorithm 1. Essentially, using the
algorithm we choose all loops that can be parallelized for
which none of the parent loops is parallel. These loops are
added for parallel code generation. A loop level is considered
parallel if all distance/direction vectors associated with this
loop have a 0 component for it and there is no parallelization
preventing loop carried scalar dependence on it.

We now illustrate which loops our algorithm will parallelize
for the three arbitrarily nested loops shown in figure 5. In
each of the example loops, Loopi is the outermost loop and
for each loop level we have marked (X) to indicate that



Algorithm 1 Algorithm to decide which loop dimensions to parallelize
Input: All loops in the program
Input: Register dependence information, Array dependence information
Output: Loop dimensions to parallelize
for all Loopi in the program do

if Loopi is parallel based on register & array dependence information then
if None of the parent loops of Loopi are parallel then

Loopi is added to list of loops to be parallelized
end if

end if
end for

!!!!!!!!!!"##$%&!!!!!!!!!!'()! ! ! "##$%&!!!!!!!!!!!!!!'()!!!!!!!! ! !!!!!!!!!"##$%&!!!!!!!!!!!!!!'*)!

!!! "##$+&!! !!'*)! ! ! !!!!!"##$+&!!!!!!!!!'()! ! ! "##$+&!!!!!!!!!'()!
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Fig. 5. Arbitrarily nested affine loops to illustrate which loops will be parallelized by our decision algorithm

the loop is not parallel and (√) to indicate that the loop
level is parallel. For the loop structure shown in figure 5(a)
we parallelize loop dimensions Loopj and Loopk. We do not
recommend Loopl for parallelization since one of its parent
loop Loopj can be parallelized and has been recommended for
parallelization. Next, for the loop structure in figure 5(b) we
recommend loops Loopl and Loopk for parallelization since none
of the parent loops of these two loops Loopi and Loopj are not
parallel. Finally, for the loop structure in figure 5(c) only Loopi

is recommended for parallelization since it is the outermost
loop and is parallel. Loopl and Loopk are both parallel, but are
not recommended for parallelization since one of their parent
loops Loopi is parallel.

C. Code Generation

After the the distance/direction vectors are calculated, trans-
formations done, parallelization decision taken, and the loop
dimensions to be parallelized are decided, code needs to be
generated for each parallel loop dimension. Since the body of
the loop is executed on all parallel threads, the most convenient
and efficient code generation model is the Single Program
Multiple Data (SPMD) model. The underlying idea is that
the iterations of the loop are divided among threads; hence
to keep the code-size increase to a minimum, the same code
is executed on all threads using different loop bounds.

From source code, SPMD code can be generated by simply
replacing the symbolic values of the lower and upper bounds
of loop induction variables by new values. These methods are
fairly straight forward as the symbolic information is readily

available in source.

new lb = Base+lbi ∗ size j+ lbj ∗ elem size

+
PROC ID ∗ (ubj − lbj) ∗ elem size

NPROC

(1)

new ub = min(ub j, new lbaddr reg

+
(ubj − lbj) ∗ elem size

NPROC
)

(2)

The new lb and new ub are replaced for each of the parallel
thread codes. Data partitioning is not necessary since we target
shared memory platforms common in multi-cores.

Generating parallel code requires the use of some parallel
thread library. We implement POSIX-compliant pthreads calls,
given that POSIX is a widely used portable industry standard.
POSIX-complaint parallel threads are created once at the start
of main(), rather than at each loop to avoid paying the steep
thread-creation cost multiple times. Only the main thread
executes serial code between parallel loops. Parallel threads
only execute loop code. When a parallel thread finishes one
loop it waits for the main thread to inform it which loop
to execute next in a broadcast. The broadcast also contains
the values of registers calculated by the main thread that are
needed by the parallel loop threads. A barrier is inserted into
the binary at the end of every loop.

We can also use the barrier most profitable for the machine
we are working on. We have implemented central, tree and but-
terfly barriers. We also compare these to the platform specific
barrier present on any systems (such as pthreads barrier).



III. AESOP: SYSTEM IMPLEMENTATION

AESOP is open source and can be downloaded from ae-
sop.ece.umd.edu. It has been developed at the University of
Maryland, College Park. Two versions are available for down-
load: (i) a source code release, and (ii) a binary distribution
for x86-64 Ubuntu 12.10 targeting i386. We note that while
AESOP may work on any system supported by LLVM, we
have only heavily tested targeting 32-bit Linux.

We now explain briefly how AESOP works. We know that
by feeding serial LLVM IR to the affine parallelizer we obtain
SPMD parallel LLVM IR. We have three scripts that help us do
this as part of AESOP for source code: (i) aesopcc which uses
clang [1] (a C language front-end for llvm) to generate LLVM
IR for source code written in C and then feeds it to the affine
parallelizer; (ii) aesopgcc that uses dragonegg [2] plugin (a
plugin that integrates the LLVM optimizers and code generator
with GCC) to generate LLVM IR from C/C++ source code
programs and feeds it into the affine parallelizer and (iii)
aesopgfort that uses dragonegg [2] plugin to generate LLVM
IR from fortran programs and feeds it to the affine parallelizer.
All the three scripts use the x86 back-end of LLVM to obtain
parallel executable for the source code fed to them.

We have tested AESOP on benchmarks whose source code
exceeds 2 million lines of code. The testing infrastructure
is available for download along with AESOP and contains
benchmarks from polybench, SPEC2006, OMP2001, NPB and
hpcc. There is also a very easy method to add new benchmarks
to AESOP. The barriers used for generating parallel code are
in a library and is also available for download with AESOP.

IV. RESULTS

Our benchmarks regularly are compiled on the AMD
Opteron(TM) 6212 machine. We also upload our results to
a shared google doc regularly. Figures 6 and 7 present the
speedups for polybench and the rest of the benchmarks as
of March 2013. We will revise these speedups if there is
any significant difference from time to time. On an average
we obtained 1.88X speedup from all the benchmarks. Our
benchmarks show that we scale well and have parallelized
benchmarks exceeding million lines of code.
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Fig. 6. Speedup on 4 threads for the Polybench benchmark suite
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Fig. 7. Speedup on 4 threads for the SPEC 2006, OMP 2001 and NAS benchmark suites


